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Figure 1: Overview of the proposed system. (a) Hull heatmap shows an overview of overlaps among several cell types for multiple
dimensionalities. Each hull represents the target cells where each cell marker or cell type is differentially expressed. (b) Marker
expression plots show the expression of cell markers or marker groups. Based on the plots, analysts can check the quality of the
hulls and overlaps with other cell types. Analysts identify the distribution of marker expression and modify the hulls by using the cell
filtering function. (c) Cluster plot shows a clustering result of cells. Analysts can use this plot when they evaluate the quality of the
hulls.

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is becoming popular in
studying the gene expression of cells at the single-cell level. ScRNA-
seq enables analysts to characterize cell types, thereby providing a
better understanding of dynamic biological processes. In scRNA-
seq data analysis, principal component analysis (PCA) is commonly
used to reduce at least thousands of dimensions in the raw data to a
manageable size so that analysts can visualize and cluster cells to
identify different cell types. The conventional process to determine
the optimal dimensionality includes a laborious manual review of
hundreds of different projection plots. To address this problem, we
introduce a dimensionality explorer for single-cell analysis, which
is a visualization system that helps analysts to effectively deter-
mine the optimal dimensionality of scRNA-seq data. It employs
a hull heatmap, which provides a holistic view of overlaps among
multiple cell types across various dimensionalities using a convex
hull-embedded color map. The hull heatmap effectively reduces
the burden of manually reviewing hundreds of projection plots to
determine the optimal dimensionality. Our system also provides
interactive gene expression level visualization and intuitive lasso
selection, thereby allowing analysts to progressively refine the con-
vex hulls of the hull heatmap. We demonstrate the usefulness of
the proposed system through a user study and three case studies
conducted by domain experts.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Heat maps; Human-centered computing—
Visualization—Visualization application domains—Visual analytics

1 INTRODUCTION

Single-cell analysis is a detailed analysis of the genome and tran-
scriptome at the single-cell level. Gene expression is the process
by which a gene is transcribed into RNA, and cell markers refer to
genes specifically expressed in a specific cell (see Figure 2). There
exist unique combinations of cell markers for the specific cell type,
which are used to identify and classify individual cells. Therefore, to
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Figure 2: An expression matrix is generated from the collected cells.
The cell type is estimated based on the matrix and cell markers.

estimate the different types and characteristics of cells, researchers
need to discover which cell markers are expressed in the cells based
on the expression level (the amount of RNA) of each cell marker. For
this, single-cell RNA-seq (scRNA-seq) is a powerful technique that
enables the measurement of the gene expression levels of individual
cells [39].

The scRNA-seq analysis workflow involves several steps, includ-
ing data pre-processing, feature selection, dimensionality reduc-
tion, clustering, and identification of differentially expressed genes.
Among them, reducing the dimensionality of data is a crucial step
because each cell type is identified in the 2D feature space generated
based on the reduced dimensionality. The standard procedure for
dimensionality reduction in the single-cell analysis is to select signif-
icant principal components (PCs) that are generated using principal
component analysis (PCA) to reduce at least thousands of dimen-
sions of input data to a manageable size (usually less than a hundred
dimensions) while preserving global and local structures in the 2D
projection that characterizes the target cell types most effectively
(see Figure 3).

In this work, we specifically focus on how to select the optimal
(PCA intermediate) dimensionality, which is one of the most time-
consuming and laborious processes in single-cell analysis. Deter-
mining a good embedding is not always easy and intuitive, because
cell locations in the embedding may change significantly as the
dimensionality changes, which results in the gathering or dispers-
ing of the target cells in which a target cell marker is differentially
expressed in the 2D embedding space (see Figure 4). Single-cell
analysts find multiple target cell types on a dimensionality reduction
plot, but sometimes target cell type regions overlap with each other,
making it difficult to analyze. Thus, conventional dimensionality
selection methods rely on an exhaustive search in the dimensionality



Figure 3: Overview of the single-cell RNA sequencing (scRNA-seq) analysis workflow. ScRNA-seq produces an expression matrix consisting
of at least thousands of cells and genes. Data processing including filtering, normalization, scaling and principal component analysis (PCA) is
performed on the matrix. Dimensionality reduction and clustering are applied to the top-N principal components (PCs) and the marker expression
and cluster plots are generated for each dimensionality (i.e., the number of used PCs) to determine the optimal dimensionality. After selecting the
optimal dimensionality, analysts perform cluster analysis and finalize cell type identification. Note that steps marked in orange color (dimensionality
reduction & clustering, optimal dimensionality selection) are our work proposed in this paper.

space to find the optimal dimensionality where multiple target cell
types are clearly separated. Analysts need to repeatedly review many
different embeddings back-and-forth and finalize the best decision
sorely based on the analyst’s memory.

To address this problem, we introduce a dimensionality explorer
for single-cell analysis, which guides analysts in identifying the
optimal dimensionality to achieve the best cell type identification
result with significantly less effort. One of the primary features
of our method is a hull heatmap (Figure 1a), which is a 2D (gene-
dimensionality) heatmap augmented by convex hulls of the target
types of cells. The hull heatmap shows overlaps of cell type areas
across various dimensionalities; consequently, analysts can easily
find the dimensionality where the target cell types are clearly sep-
arated. Therefore, the labor-intensive manual review of different
embeddings can be significantly reduced. Our system also provides
intuitive interactive cell filtering functions using the lasso selection
(Figure 1b), which allows analysts to progressively update the hull
heatmap until they obtain the most satisfactory heatmap and identify
the optimal dimensionality. We demonstrate the effectiveness of the
proposed system via a user study and three case studies conducted
by domain experts.

Our contributions are:
• The problem characterization of scRNA-seq analysis and re-

quirement analysis for system design;
• A novel visualization technique (hull heatmap) that shows the

difference in hundreds of marker expression plots according to
multiple dimensionalities and cell markers at a glance;

• Interactive cell filtering to update the hull heatmap using user
feedback;

• A user study and three case studies showing the effectiveness
of the proposed system.

The online demo and source code are publicly available at https:
//github.com/hvcl/DESC.

2 BACKGROUND

2.1 Overview of Single-Cell Analysis Workflow

Figure 3 shows the overview of the single-cell analysis workflow.
ScRNA-seq provides the expression matrix that shows the gene ex-

pression levels of each cell. The matrix consists of at least thousands
of cells and genes. Once the raw input data are pre-processed (e.g.,
cell filtering, normalization, identification of highly variable genes,
and scaling), dimensionality reduction is performed to reduce the
data dimension because the high dimensionality of scRNA-seq data
makes clustering and 2D projection results unreliable (i.e., the curse
of dimensionality) [19]. Among the several existing dimensionality
reduction methods, PCA is commonly used in single-cell analysis
to overcome the extensive technical noise in any single feature for
scRNA-seq [2].

Because different types of cells can express the same genes, dif-
ferentially expressed cell markers (genes) are used to estimate cell
types. A gene is declared differentially expressed in a cell cluster if
a significant difference is observed in expression levels among mul-
tiple cell clusters. A commonly used method to examine cell marker
expression is a 2D projection plot of cells (e.g., t-stochastic neighbor
embedding (t-SNE) [42] or uniform manifold approximation and
projection (UMAP) [25]) colored by the expression levels of each
marker (see Figure 5), i.e., marker expression plot. Because it is
difficult to simultaneously visualize the expression level of multiple
markers of a cell in a single plot, analysts usually review multi-
ple plots to find cells in which all target markers are differentially
expressed.

When visualizing cells in a 2D plot, the appropriate number of
PCs (i.e., dimensionality) should be selected because the selection
of the dimensionality directly affects the 2D projection result, which
eventually affects cell type identification. Single-cell analysts obtain
important clues from the spatial distance between cells in the 2D
projection plot based on the assumption that similar cells tend to
have smaller feature distances. However, certain rare cell types
with a small number of cells can be found only in certain specific
dimensionalities. Hence, selecting only a few major PCs may not
satisfactorily represent such cells [21]. Furthermore, Raimundo et
al. showed that the selection of the dimensionality strongly affects
the performance scores (adjusted mutual information and silhouette)
of the embedding of scRNA-seq data [28]. Therefore, selecting
the optimal number of PCs for retaining the important information
that can efficiently represent the target cell types while removing
technical noise or other unwanted sources of variation by reducing



Figure 4: The embedding changes for the cells in which gene FCER1A is differentially expressed (the target cells of FCER1A) as the dimensionality
increases. In dimensionalities 2–5, the target cells are spread out; therefore, it is difficult to identify the cell type. Conversely, in dimensionalities
6–8, the target cells start to form a cell cluster; consequently, it is easier to define the cell type. Similar to this example, cell type identification
results can differ based on the selection of dimensionality.

Figure 5: Expression plots of cell markers GNLY (a) and NKG7 (b).
The color represents expression level. The green circles represent
the cells where each marker is differentially expressed. Because both
genes are cell markers of NK cells, the cells where both genes are
differentially expressed (i.e., the cells inside the red dashed circles)
are estimated as NK cells.

Figure 6: (a) Elbow plot shows the fraction of variance explained by
each PC. (b) JackStraw plot shows the distribution of p-values for
each PC.

dimensionality is a challenging but crucial process.

2.2 Optimal Dimensionality Selection
The conventional optimal dimensionality selection methods are
based on analyzing the changes in the data distribution across differ-
ent dimensionalities. One method is to use an elbow plot (Figure 6a),
which shows the fraction of variance explained by each PC. Re-
searchers are required to visually identify the point where the curve
makes a sharp bend, which is often referred to as the ”elbow” and
retain only PCs before the occurrence of the elbow. Another com-
monly used method is the JackStraw plot [9] (Figure 6b), which
shows the distribution of p-values for each PC. The best PC is found
near the sharp drop (change) of p-values in this plot. However, it is
not always a straightforward process to determine a proper threshold
in these plots because changes are sometimes considerably sub-
tle and consequently accurate differentiation cannot be performed.
Therefore, a manual review of 2D expression plots of target cell
markers and cluster plots for each PCA intermediate dimensionality
is preferred for a more accurate analysis.

The process of determining the optimal dimensionality by re-
viewing the marker expression and cluster plots is performed as
follows. The marker expression and cluster plots share the same 2D
embedding from the projection of the selected PCA intermediate
dimensionality. First, target cell types and markers need to be listed.
Analysts usually find known cell markers of target cell types through
literature review. Target cell refers to the cell in which a target cell
marker is differentially expressed, and is the candidate for the target

Figure 7: Marker expression (b) shows the two target cell clusters
(green and red circles) of ILC1-like cells. However, on cluster plot (a),
the cells inside the green circle form a cluster with other cells that are
not the target cells. Thus, the cells in the red circle are more likely to
be ILC1-like cells.

cell type. Second, analysts identify the target cells of each target
cell type in each dimensionality based on the marker expression
plots. Figure 5 shows sample expression plots of GNLY, and NKG7
genes. Each dot represents a single cell, and its color represents
the expression level (i.e., the degree to which a particular gene is
expressed) of each cell. Analysts identify the target cells where
each marker is differentially expressed (i.e., the cells in the green
circles in Figure 5). Note that GNLY and NKG7 are cell markers
of NK cells. Once analysts identify the target cells of GNLY and
NKG7, then they collect cells commonly included in both target
cells and assign the final cell type to them (in this example, NK
cells, Figure 5 red dashed circle). Certain cell types are often not
found in some dimensionalities. As shown in Figure 4, a few target
cells of cell marker FCER1A are scattered in dimensionality 2–5;
therefore, it is difficult to define a tight cluster where FCER1A is
differentially expressed (i.e., the green circle contains cells that are
not differentially expressed). In this case, analysts should search for
other dimensionalities for a tighter cluster, such as dimensionality
6–8 in Figure 4.

After finding all target cells, analysts then select the optimal
dimensionality that makes the best target cell clusters (i.e., cells
belonging to the same cell type are gathered closely together while
different cell types are clearly separated, and all the target cell types
are found). Also, they evaluate the dimensionalities using cluster
plots (Figure 1c). The cluster plot is colored by the clustering results
of the selected PCA intermediate dimensionality. If the target cells
estimated as the same cell type are differently clustered or clustered
with the target cells of other cell types, some of the target cells may
not be the correct target type of the cells (see Figure 7). In this case,
analysts can redefine the target cells based on the cluster plot or
review other cluster plots in the other dimensionalities.

The position of the target cells usually changes depending on the
dimensionality (see Figure 4). Thus, some target cell types may not
be found in some dimensionalities, or the target cells from differ-
ent cell types can overlap. In addition, the cell type identification
result can be different from the clustering results. Therefore, at
least hundreds of plots must be examined to determine the optimal
dimensionality for at least tens of dimensionalities and target cell
markers.



3 RELATED WORK

3.1 Single-Cell Analysis Methods
Clustering analysis is commonly used to handle multidimensional
scRNA-seq data from various cell types. Several publicly avail-
able software packages for single-cell analysis such as Seurat [5],
Scanpy [48], and SINCERA [13] provide different clustering meth-
ods. These software tools focus on clustering rather than the dimen-
sionality of data. Some of these tools provide information on each
dimensionality, but analysts are still required to employ heuristic
methods to determine the optimal dimensionality. These tools are
useful for determining significant cell clusters to obtain more infor-
mation about cell types after selecting the optimal dimensionality.

In single-cell analysis, most scRNA-seq studies rely on t-SNE
for 2D projection [22]; however, more recent methods such as
UMAP [25] are also emerging. Deep learning-based dimensionality
reduction methods are also used for single-cell analysis (e.g., para-
metric t-SNE [41], parametric UMAP [31], scvis [11], DR-A [24],
and VASC [46]). These methods need more scRNA-seq datasets for
good performance. There are various dimensionality reduction meth-
ods for single-cell analysis [3,29,37,40,43,44,49]. However, to use
these methods, analysts should manually fine-tune the parameters
of the algorithms and the dimensionality of the data, which severely
affects the projection results. Choosing the appropriate parameters
remains an unsolved problem [19].

Most existing R or Python packages for single-cell analysis re-
quire analysts to write codes. In addition, they should select suitable
analysis algorithms and visualization methods on their own. To ad-
dress these problems, various visual analytical tools were developed
to guide analysts in examining single-cell data. Cerebro [14] enables
analysts to investigate single-cell data through an intuitive graphical
interface. CyteGuide [16] guides analysts in exploring the hierar-
chy of single-cell data in a single view. Cytosplore [15] provides
multiple linked views that enable analysts to identify both known
and unknown cell types easily. VDJView [32] visualizes scRNA-seq
data with metadata profiles to ease the process of hypothesis test-
ing, data interpretation, and the discovery of cellular heterogeneity.
scQuery [1] provides an automated pipeline for downloading and an-
alyzing publicly available scRNA-seq datasets. scSVA [38] supports
interactive three-dimensional visualization and exploration of mas-
sive single-cell data. Even though there are several visual analytical
tools for single-cell analysis, none of them focus on dimensional-
ity selection, which makes it inappropriate to directly compare our
system.

3.2 Visual Analysis of Dimensionality Reduction and
Clustering

There exist various methods to analyze dimensionality reduction
or clustering using visualization. PRIM-9 [12] allows analysts to
examine multidimensional data using continuously updated projec-
tions. Asimov et al. proposes a sequence of orthogonal projections
of multidimensional data and searches for desirable sequences to un-
derstand the shape of data [4]. The Hierarchical Clustering Explorer
is a visualization tool for hierarchical clustering, which provides an
overview of large data sets, dynamic query controls, coordinated
displays, and cluster comparisons [34]. Cluster Sculptor [27] is a
cluster analysis framework to enable analysts to interactively adjust
clustering parameters based on the visualization of characteristics
of high-dimensional data. Clustrophile 2 [7] recommends various
clustering parameters and continues to improve the clustering results
based on user feedback. INCREMENT [26] refines clustering results
based on user feedback by training a feature embedder to map the
input features into a new feature space. TINDER [36] is a Bayesian
prior elicitation framework based on user feedback. Analysts can
reject clustering results and obtain new results.

Similar to these methods, ours enables users to easily explore
multiple projection plots and guides users to search for optimal

solutions based on user feedback. However, the major difference is
that our method provides an intuitive visualization-guided approach
(i.e., the hull heatmap and interactive visual interface) to compare
more than a hundred projection plots in a single view, which saves
both time and labor used in comparing many marker expression
plots for multiple dimensionalities and cell markers.

4 REQUIREMENT ANALYSIS FOR SYSTEM DESIGN

To design our visualization system, we interviewed five domain
experts who routinely use Seurat [5] and SC3 [20] for single-cell
analysis, and derived the requirements as listed below.
R1: Visualization of multiple cell marker expressions over var-
ious dimensionalities in a single view: To determine an optimal
dimensionality, analysts should generate and review expression plots
for tens of markers and dimensionalities, which require a significant
amount of time and effort. In the conventional workflow, analysts
compare multiple marker expression plots displayed on a screen.
Owing to the limited screen size, analysts should frequently change
their views to compare thousands of plots. In addition, analysts
are required to memorize previous views and compare them using
their mental images, which is not easy considering the large num-
ber of plots that must be analyzed. Therefore, identification of the
expression of multiple cell markers at various dimensionalities in a
single view using a compact visual representation will be helpful for
analysts to compare multiple expression plots.
R2: Tracking target cells of target cell types: To identify a spe-
cific cell type, analysts must identify the expression of relevant cell
markers. In each dimensionality, they should compare expression
plots of multiple cell markers and identify the target cells where all
the markers for a target cell type are differentially expressed. Then,
they keep track of those cells over at least tens of dimensionalities
to determine the optimal dimensionality, which consumes a large
amount of time and memory. Highlighting the target cells relieves
them of having to compare multiple plots.
R3: Visual cues to help identify target cells: Analysts identify
the target cells using their colors (expression levels) and locations in
a marker expression plot. As there are no widely accepted criteria
(e.g., distance between cells, intensity level, etc) for the target cells,
analysts subjectively define the target cells by measuring the relative
distance and difference in expression levels between cells. In such a
scenario, visual cues provide better judgment for extra information
about the distribution of expression levels and local densities.
R4: Visual cues to help identify overlaps between target cell
types: Analysts find the dimensionality in which all target cell types
are clearly separated. However, there are two challenges. First, the
positions of cells change depending on the dimensionality. Thus,
analysts do not know which dimensionalities have overlaps until
they review all dimensionalities. Second, cell markers from different
cell types can be expressed in a cell. In this case, analysts should find
the type of the cell by reviewing several marker expression levels
and clustering results. To address these challenges, visual cues for
avoiding unwanted overlaps are required.

5 DIMENSIONALITY EXPLORER FOR SINGLE-CELL ANALY-
SIS

Our method guides analysts in determining the optimal dimensional-
ity through a novel visualization technique that are specifically de-
signed for the exploration of the dimensionality space. Hull heatmap
provides an overview of overlaps among several cell types over mul-
tiple dimensionalities. By using cell filtering, analysts can update the
hull heatmap by interactively modifying the parameters defining the
hulls based on their expertise. All the dimensionality reduction plots
(t-SNE plots) used in our system were generated by the RunTSNE
function in Seurat [5] with default parameters. In the following
sections, we explain the design rationale of the proposed system



Figure 8: Components of hull heatmap. Hull heatmap consists of
(rows of) cell type blocks and marker blocks. A cell type block shows
the target hulls of the corresponding marker group. A marker block
shows the target hulls of a marker. Each target hull can be divided into
the preserved hulls and overlapping hulls. The smaller the overlap
between cell types is, the brighter the color of the cell type block
becomes. When there is no overlap, the cell type block has a light
blue color. The smaller the target hull, the brighter the color of the
marker block.

and the method used to search the optimal dimensionality using the
proposed system in detail.

5.1 Hull Heatmap

The hull heatmap was designed to show the change of marker ex-
pression for multiple dimensionalities and cell markers in a single
view (R1). The row of the heatmap represents a cell marker or cell
type and the column represents the dimensionality. The target cells
of each cell marker are visualized in the form of a convex hull in
each dimensionality and the hull is called the target hull (Figure 8a).
In order to show hundreds of the target cell regions on a limited
visualization space, we chose convex hulls, which can visualize
the regions relatively simpler than other methods such as concave
hulls and alpha-shapes. We call a cell in the hull heatmap a block
to avoid confusion with the word ”cell” also used in the single cell
we analyze. Then, each target hull is drawn in each block. Thus,
analysts can easily identify the area of the target cells over multiple
dimensionalities without the requirement of reviewing many plots
(R2). Also, the heatmap enables analysts to track the target cells of
a target cell type by making a group of the target cell markers (for
example, IL7R CCR7 is a marker group consisting of two markers,
IL7R and CCR7), so the blocks are divided into cell type blocks
(marker group blocks) (Figure 8b) and marker blocks (Figure 8c).
Each block of the heatmap also includes overlap information be-
tween target cell types (R4). A target hull is divided into preserved
hulls and overlapping hulls. Preserved hulls (Figure 8d) represent
the area of the target hulls not overlapped by the target hulls of other
target cell types. Overlapping hulls (Figure 8e) represent the area
of the target hulls overlapped by the target hulls of other target cell
types. The outline color of preserved hulls is green, and the outline
color of overlapping hulls is red. Thus, analysts can easily identify
which area is overlapped by other target cell types. The color of the
block also provides information on the overlap. When a cell type
block has only preserved hulls, the color of the block is light blue.
When a cell type block has both preserved and overlapping hulls,
its color is decided by the preservation ratio. The ratio is defined as
the area of the preserved hulls over the area of the target hulls. For
coloring, the ratio is normalized in each row of the heatmap. The
cell type block with the lowest ratio in the row has a dark purple

color, and the cell with the highest ratio has a light purple color. The
intermediate cells get colors by linear interpolation. The color of
the marker block is decided by the area of the target hulls. The total
row (Figure 8f) shows the average preservation ratio of all target
cell types. Based on this color visualization, analysts can easily
identify how much different target hulls overlap each other in each
dimensionality. The yellow edge highlights a cell type block that has
the largest preservation ratio in the row of the heatmap, so analysts
can search the optimal dimensionality based on the edge.

To generate a convex hull, we define the target cells as follows.
First, we identify the cells where the expression level of each cell
marker is higher than the expression level threshold (each cell marker
is differentially expressed). Then, we compute the local density of
each cell using Gaussian kernel density estimation [35] and normal-
ize the density values. Finally, we collect the target cells by filtering
cells whose local density is lower than the user-given density thresh-
old to avoid the generation of a large hull by a few outlier cells.
When creating target hulls of a cell type block, we identify the cells
whose expression levels of all group member markers are higher than
the given expression level threshold, filter the cells based on the local
density, and create convex hulls of the cells. The default expression
level threshold and density thresholds are 0 and 0.1, respectively.
Analysts can change both the expression level and density thresholds
using the cell filtering function (Section 5.4).

5.2 Marker Expression Plot
The marker expression plot (see Figure 8) is a dimensionality reduc-
tion plot that is colored based on the expression level of a cell marker
or the target cells of a marker group. On a marker expression plot
of a cell type, the target hulls of the cell type and other overlapping
cell types are drawn. With the marker expression plots, analysts can
identify the target cells and overlapping cell types.

5.3 Cluster Plot
The cluster plot (Figure 10a) is a t-SNE plot that is colored according
to the clustering result of each dimensionality (number of PCs). The
embedding is the same as the marker expression plot. The clustering
result is generated using the clustering function of Seurat [5] with the
default parameters. The function clusters cells using a shared nearest
neighbor modularity optimization-based clustering algorithm [45].
Analysts can change the dimensionality in the hull heatmap; then,
the cluster plot is updated into the dimensionality reduction plot for
the selected dimensionality.

The cluster plot is used to evaluate each 2D embedding. Analysts
can check how cells that are estimated as a particular cell type form
clusters in the cluster plot and obtain information for further analysis.
If the cells of a specific cell type are divided into multiple clusters
in the cluster plot, it may imply that the cell type can be divided
into multiple sub-types. If the cells of a cell type are included in a
single cluster with other cell types, it may imply that the cell types
in the cluster have a close relationship. Analysts explore various
dimensionalities to select the optimal one in which only cells of a
target cell type form a single cluster.

After the optimal dimensionality is selected, analysts commonly
explore clustering results performed on the selected dimensionality
with various clustering algorithms and parameters and compare cell
type identification results. Because this step is beyond the scope of
this work, we used the default clustering algorithm and parameters
provided in Seurat for generating cluster plots.

5.4 Cell Filtering
Before cell filtering, the target hulls depend on the default expression
level threshold and density threshold. Analysts usually subjectively
judge which cell marker is differentially expressed in which cell
cluster. When the hulls and their judgments do not match, the
hulls of the hull heatmap and marker expression plots may not be



Figure 9: Example of the cell filtering process for the
S100A12/S100A9 group. (a) In each cell filtering window of the mem-
ber markers, analysts can change each expression threshold. The
target cells of the group are updated based on the new thresholds and
the color of the cells changes to green. (b) In the next step, the color
of the target cells changes based on their local densities. Analysts
can select a new density threshold using the density color bar. (c)
Final target cells and hull of the group.

Figure 10: By selecting a proper expression level threshold, analysts
can figure out expression pattern. It can be easily observed that the
clusters 1 and 8 in (a) have different expression levels in (c).

useful. Analysts want to focus on certain significant (important)
cells and follow the positional changes of only those cells when the
dimensionality changes (R2).

To address this issue, we propose cell filtering (Figure 9). A cell
filtering window consists of a marker expression plot, an expres-
sion level histogram, and an expression threshold slider. When we
perform cell filtering on a marker group, one cell filtering window
appears for each member marker. The expression level histogram
is a histogram of the marker expression levels of all the cells in the
dataset (R4). Analysts can move the slider to change the marker
expression threshold after checking the expression level histogram.
The target cells whose expression level is higher than the updated
threshold are colored in green in the marker expression plot of the
window. Whenever the expression level threshold of the member
marker is updated, the target cells of the group are also updated and
colored in green in the marker expression plot (Figure 9a). When
the user clicks a button, the target cells of the group are colored
according to their local densities (R4) (Figure 9b), and the density
color bar appears. The local densities are calculated using Gaussian
kernel density estimation [33]. Analysts can easily identify regions
where the target cells are gathered closely. Then, analysts can select
a new density threshold by selecting a density color on the density
color bar. By selecting a proper density threshold, analysts can
filter out the few target cells located far from the remaining cells,
thereby preventing hulls from becoming too large. Another option
for selecting the cells of interest is to use a lasso tool to directly
select cells in the marker expression plot. This allows analysts to
effectively filter out less relevant cells. For all dimensionalities, our
system updates the target cells and hulls of the group based on the
new density threshold and cell selection (Figure 9c).

Analysts can use cell filtering to examine the expression level

pattern of a marker. Figure 10b shows the marker expression plot
of IFITM3. The cells in clusters 1 and 8 in Figure 10b appear to
have similar expression levels with no expression level threshold in
Figure 10b. After increasing the threshold, we found that IFITM3
was differentially expressed in the cells of cluster 1 but not in the
cells of cluster 8. Therefore, the cell types of the two clusters are
likely different.

6 EVALUATION

To demonstrate the usefulness of our system, we conducted a user
study with three domain experts (P1-3) and three case studies with
four domain experts (P1-4). The information of the participants is
listed in Supplemental Table 1. The user study focuses on a compar-
ison between the state-of-the-art clustering methods for scRNA-seq
data and our method, and the case studies focus on demonstrating
how our method is useful for determining the optimal dimensional-
ity.

6.1 User Study Design
The main goal of this user study is to quantitatively assess the
performance of our method. For this, we compared our method
with the state-of-the-art scRNA-seq data clustering methods to show
that our method enables analysts to get similar or better cell type
identification results in a shorter time. Thus, we compared the
clustering accuracy and analysis time. The methods compared in this
study are scziDesk [8], scGNN [47], and graph-sc [10], which are
the state-of-the-art deep learning-based scRNA-seq data clustering
methods. The clustering performance of the methods depends on
both 2D embedding (projection) and clustering (assigning labels)
results. When using the clustering methods, participants obtained
various clustering plots by changing parameters; among them, the
best one is selected. In our method, participants also compared
different plots with our visualization tool and selected a plot with
the best clustering result. In this study, three participants analyzed
two publicly available datasets: epithelial cells and endothelial cells
datasets [18]. The epithelial cells dataset contains 3643 cells and
29634 genes, and the endothelial cells dataset contains 2107 cells and
29634 genes. In the epithelial cells dataset, the participants identified
the following four target cell types: AT1, AT2, Club, and Ciliated.
The cell markers used to identify the above cell types were AGER,
SFTPC/LAMP3, SCGB1A1, and FOXJ1/RFX2, respectively. In the
endothelial cells dataset, the participants identified the following
five target cell types: Tip-like ECs, Stalk-like ECs, Lymphatic ECs,
and EPCs. The cell markers used to identify the above cell types
were RAMP3/RGCC/ADM, SELP/ACKR1, CCL21/ LYVE1, and
TYROBP/C1QB, respectively. The participants searched the best
clustering plot for four methods (ours and the three state-of-the-
art methods) and two datasets, 8 times in total. A dry run was
first conducted on the test dataset with our tool to familiarize the
participants with the system for performing the main tasks.

6.2 User Study Results
The clustering performance is measured with two external score met-
rics, adjusted rand index (ARI) [17] and normalized mutual informa-
tion (NMI), and two internal score metrics, Silhouette score [30] and
Calinski-Harabasz (CH) index [6]. The external scores are used to
evaluate the agreement with the ground truth and the internal scores
are used to evaluate the cluster compactness. For all scores, a higher
value means better performance.

Table 1 shows the average clustering performances of each
method with the epithelial and endothelial cells dataset. In the
result of the epithelial cells dataset, scziDesk showed the highest
ARI and NMI scores. Ours and graph-sc produced similar ARI and
NMI scores to scziDesk, while scGNN showed the lowest scores.
Also, graph-sc produced the highest Silhouette and CH scores. In
the result of the endothelial cells dataset, ours has the highest ARI



Table 1: The average clustering performances of each method with
the epithelial and endothelial cells dataset.

Ours graph-sc scziDesk scGNN

Epithelial

ARI 0.911 0.906 0.930 0.344
NMI 0.847 0.875 0.886 0.486

Silhouette 0.480 0.568 0.335 0.223
CH 3284.369 4710.016 1480.184 1637.838

Endothelial

ARI 0.553 0.479 0.435 0.234
NMI 0.581 0.589 0.553 0.310

Silhouette 0.275 0.208 0.126 0.240
CH 486.898 419.986 203.555 942.409

Figure 11: The experiment time of each method on the two datasets.
Participants were able to finish the task up to three times faster using
our method compared to SOTA clustering methods for single-cell
analysis.

and Silhouette scores. Also, NMI of ours is similar to the highest
NMI. scGNN has the highest CH score because it tends to form
much more separate clusters than other methods.

In the experiments of other methods except scGNN, the number
of clusters was set to the number of target cell types. However,
scGNN cannot specify the number of clusters, so some participants
did not get accurate results in some experiments. Therefore, the
average ARI and NMI of scGNN were always the lowest.

Fig. 11 shows the experiment time of each method with the two
datasets. The time includes both computation time by a machine and
interaction time by participants. With both datasets, the participants
took the shortest time on average when using ours. It shows that
ours enables analysts to obtain better or similar clustering results
to the state-of-the-art clustering methods for scRNA-seq data in a
shorter amount of time.

6.3 Case Studies

We conducted three case studies with four domain experts. The goal
of the case studies is to conduct an in-depth analysis of how our
method can help analysts identify the optimal dimensionality. In
each case study, three experts (P1–P3) individually identified the
target cell types and optimal dimensionality using our method, and
the most experienced expert (P4) validated the optimal dimensional-

ities found by the three experts. The experts analyzed three publicly
available scRNA-seq datasets [23,50], i.e., peripheral blood mononu-
clear cells (PBMC), T cells and myeloid-like cells in the lung tumor
microenvironment. The analysis dimensionalities ranged from 2 to
30 for PBMC dataset, and from 2 to 50 for T cells and myeloid-like
cells datasets. Each case study consists of the following three steps:
1) loading the given dataset to our system, 2) modifying hulls of
target cell types, and 3) searching the optimal dimensionality.

6.3.1 PBMC Dataset

The target cell types used in this study are as follows: CD14+ Mono,
B, CD8+ T, FCGR3A+ Mono, NK, DC, and Platelet cells. The
cell markers used to identify the above cell types were CD14/LYZ,
MS4A1, CD8A, FCGR3A/MS4A7, GNLY/NKG7, FCER1A/CST3,
and PPBP, respectively.

After creating a heatmap (Figure 12a), P1 found that the dimen-
sionality 27 in the total row was highlighted by the yellow edge. He
started to analyze plots in this dimensionality and found that the
groups except for MS4A1 and FCER1A/CST3 had overlaps with
other groups. P2 explored several dimensionalities at the beginning,
but he was not able to not find any significant difference and started
cell filtering in dimensionality 6. P3 started to analyze the dataset in
dimensionality 11, which was highlighted by the yellow edge in the
CD8A row. In dimensionality 6 and 11, all groups except MS4A1
had overlaps.

All participants identified the initial hulls of all target marker
groups (Figure 12b). They started to filter cells to reduce the overlaps.
They adjusted the expression threshold and selected only cells that
are highly differentially expressed. Based on the density plot, they
created hulls consisting of cells with high local density.

Initially, P1 found that PPBP overlapped with CD14/LYZ,
FCGR3A/MS4A7, and CD8A (see Figure 12c). After cell filter-
ing, three overlaps were removed and the preservation ratio of PPBP
and MS4A1 became 1 for all dimensionalities. Next, he modified
the hull of CD14/LYZ to remove overlaps between CD14/LYZ and
FCGR3A/MS4A7 (see Figure 12d). Also, the preservation ratio of
FCGR3A/MS4A7 became 1 for dimensionalities higher than 5. Last,
he modified the hull of GNLY/NKG7 to remove overlaps between
GNLY/NKG7 and CD8A (see Figure 12e). The preservation ratio
of GNLY/NKG7 and CD8A became 1 for dimensionalities higher
than 2. P2 and P3 also performed similar cell filtering processes to
modify hulls and remove all overlaps.

When hull modification is done, all participants checked the
dimensionality highlighted by the yellow edge (i.e., yellow dimen-
sionality) in the total row of the hull heatmap (see Figure 12f). Also,
they compared the final hulls and cluster plots in this dimensionality
to check whether the hulls accord with the clustering result (i.e., cells
belonging to the same label in the cluster plot are grouped together
with a hull). Finally, they selected their yellow dimensionality as the
optimal one. P1 and P3 selected dimensionality 8 and P2 selected
dimensionality 6.

P4 confirmed that both 6 and 8 are the optimal dimensionality
because all target cell types were well-separated and all hulls ac-
corded with the clustering result. The main reason for the mismatch
between participants was due to different cell filtering. In dimen-
sionality 6 (Supplemental Figure 7a), a few cells of the hull of
FCER1A/CST3 were inside the hull of CD14/LYZ. Because the
hulls of FCER1A/CST3 and CD14/LYZ did not overlap in dimen-
sionality 8 (see Supplemental Figure 7b) and the overlapping region
in dimensionality 6 was too small, P1 and P3 did not modify the
hull of FCER1A/CST3. On the other hand, P2 removed this overlap,
which resulted in the yellow dimensionality 6.

6.3.2 Myeloid-like Cells Dataset

After creating a heatmap, P1 started to analyze plots in di-
mensionality 31 (the yellow dimensionality). He identified that



Figure 12: The overview of the first case study using the PBMC dataset. (a) The initial hull heatmap and (b) hulls of target groups. P1 modified the
hull of (c) PPBP, (d) CD14/LYZ, and (e) GNLY/NKG7. (f) The final hull heatmap. See Supplemental Figure 1-6 for enlarged figures of it.

FCER1A/CD1C/CD1A/CD207 and CLEC9A/XCR1 had no over-
laps while the other four groups had overlaps. P2 found that the
preservation ratio of CLE9A/XCR1 is 1 for the dimensionalities
larger than 16, so he started cell filtering in dimensionality 17 in
which all groups except CLEC9A/XCR1 had overlaps. P3 started
to analyze plots in dimensionality 7, which was highlighted by the
yellow edge in the CD163/IFITM3 row. All groups overlapped each
other in this dimensionality.

All participants continued to modify hulls and removed overlaps
similarly as in the first study (with the PBMC dataset). Participants
expressed difficulty in defining hulls in this study compared to the
first study because the overlapping regions among target groups
were larger. Therefore, when defining hulls, they referred to the
cluster plot more frequently.

When P1 modified the hull of FCGR3A/CYTIP, they selected
only one of two clusters with similar expression levels and density
because the selected cluster (Supplemental Figure 8a) did not overlap
with other hulls unlike the other one (Supplemental Figure 8b). He
said he usually selected cell clusters with a smaller overlap with other
types of cells even though the cell clusters have similar expression
levels or local density. Owing to the overlapped hulls drawn on the
marker expression plot, he was able to filter out another cell-type
cluster without comparing other marker expression plots.

When P2 modified the hull of FCGR3A/CYTIP, FCGR3A and

CYTIP were expressed in the middle of their marker expression
plots. Thus, P2 thought that the target cells of FCGR3A/CYTIP
would be in the middle when he reviewed the two expression plots
individually. However, our system showed that there were few target
cells in which both genes are differentially expressed in the middle
of the plot (see Supplemental Figure 9), which helped P2 to find the
cell type area more accurately.

After removing all overlapping regions in the hull, the yellow
dimensionality of P1 was 8 and that of P2 and P3 was 7. By compar-
ing the hulls and cluster plots in the selected yellow dimensionality,
the participants discovered that FCER1A/CD1C/CD1A/CD207 and
CLE9A/XCR1 were clustered together, and FCGR3A/CYTIP and
S100A12/S100A9 were clustered together (see Supplemental Fig-
ure 10a). Thus, they tried to find the dimensionality in which all
target groups are matched with different clusters in the cluster plot.
Based on the light blue colors in the total row, the participants ob-
served that no overlap happened in the dimensionalities larger than
their yellow dimensionality. They compared the cluster plots by
increasing the dimensionality by one at a time. They found that
FCER1A/CD1C/CD1A/CD207 and CLE9A/XCR1 were included in
different clusters in the dimensionality 9 or larger (see Supplemental
Figure 10b), and FCGR3A/CYTIP and S100A12/S100A9 were in-
cluded in different clusters starting in the dimensionality 15 or larger
(see Supplemental Figure 10c). Therefore, all participants selected



dimensionality 15 as the optimal one, which is later confirmed by
P4 as well.

6.3.3 T Cells Dataset
In the beginning, all groups had overlaps for all dimensionalities. P1
started to analyze plots in dimensionality 48 (the yellow dimension-
ality). P2 found that the heatmap color of TRDC/TRGC2 began to
brighten from dimensionality 29, so he modified the hulls in that
dimensionality. P3 started to analyze plots in dimensionality 5 be-
cause it was highlighted by the yellow edge in the CD3D/CD4 row.
All participants continued to modify hulls and removed overlaps
similarly as in the previous case studies.

After removing all overlaps, the yellow dimensionality of P1 and
P3 was 33 and the yellow dimensionality of P2 was 29. By com-
paring the hulls and cluster plots, they observed that CD3D/CD8A
and TRDC/TRGC2 were all clustered together. To find the dimen-
sionality that separates these two groups in different clusters, they
compared cluster plots, starting from dimensionality 3 and gradually
increasing the dimensionality. Finally, P1 selected dimensionality
15, and P2 and P3 selected dimensionality 14, making CD3D/CD8A
and TRDC/TRGC2 included in different clusters. Because the hulls
were created by thresholding and lasso selection, small differences
among the hulls of participants made them select different optimal
dimensionalities. P4 confirmed that both dimensionality 14 and 15
can be optimal because there was little difference between them.

6.4 Overall Feedback
In the conventional analyses, the participants expressed that it was
difficult to compare all dimensionalities because they were unable
to review all plots simultaneously; they had to compare plots using
their mental images. In addition, they faced difficulty in finding
cells where cell markers were differentially expressed when cell
colors looked similar in the marker expression plots. In general,
they thought that it was difficult to present a final decision using this
method. Furthermore, frequent user interactions requiring a switch
between plots resulted in the participants becoming tired.

In the analyses using our method, the participants felt that the
analysis using our method was more straightforward than the con-
ventional analyses because the hull heatmap enabled them to quickly
identify overlaps of the target cells of multiple dimensionalities in
a single view, which reduced the range of exploration. The par-
ticipants were confident in the analysis results because they can
clearly watch the overlaps and set the expression level and density
thresholds after checking the effects of the thresholds shown in the
plots. Furthermore, the grouping of multiple markers of the same
cell type enabled the participants to track the target cells without
comparing multiple marker expression plots in each dimensionality.
In the conventional analyses, the participants had to return to the
initial step to filter certain cells and repeat data processing, including
PCA, 2D projection, and clustering. In contrast, using our method,
they were able to filter out certain cells during the exploration of the
projection plots and examine the results in a few seconds.

7 DISCUSSION & LIMITATION

In this work, we focused on selecting the optimal number of PCs for
the t-SNE projection. Even though it is possible to use the raw input
data directly for 2D projection using t-SNE, such a naive application
of t-SNE does not work well because the high dimensionality (i.e.,
the large number of genes) of scRNA-seq data results in the distances
between cells appearing similar; thus, global structures are not well
preserved. Therefore, using PCs for the input of t-SNE is considered
a standard process in single-cell analysis [19, 21].

T-SNE has multiple hyper-parameters, including perplexity, learn-
ing rate, and number of iterations. We observed that the changes in
hyper-parameters did not result in noticeable differences in our ex-
periments, and the default parameters worked well. We believe this

is because the data size is not too big due to dimensionality reduction
by PCA. Some literature reported that parameter adjustments might
be required for extremely large data (e.g., over n≫100,000) [21];
however, this is not the case in this study.

We observed that, for certain rare cell types, selecting the optimal
number of PCs can be difficult and tricky in conventional methods
because large changes occur in most significant PCs. However, less
significant PCs may represent important information for such rare
cell types. Our method allows analysts to easily identify position
changes of target cells for a wide range of dimensionalities and even
helps analysts identify less significant PCs where all target cell types
are found.

After defining target cells, analysts reviewed the cluster plot
to check whether the target cells formed a single cluster in the
clustering result. When target cells are separated into multiple
clusters, this implies that the cells can be divided into multiple
sub-cell types. Because the clustering result changes depending on
the dimensionality, analysts repeatedly check the cluster plot for
several dimensionalities. Similar to the hull heatmap, highlighting
the changes in clustering results can be helpful in determining the
optimal dimensionality.

8 CONCLUSION & FUTURE WORK

In this paper, we introduced a novel visual analytics system, for
interactively determining the optimal dimensionality for dimension-
ality reduction of the data for the task of cell type identification. By
providing a novel visualization scheme, such as the hull heatmap and
several interactive cell filtering methods, our method significantly re-
duces the effort required to review a large number of dimensionality
reduction plots. We demonstrated the efficacy and usefulness of the
proposed system through one user study and three case studies. In
the future, we plan to extend our system using various 2D projection
methods, including UMAP. The current system only supports the
default t-SNE parameter; however, an in-depth analysis of the effect
of both t-SNE parameters and PCA dimensionality would be an
interesting future research direction.
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